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Driven Frenkel-Kontorova model. II. Chaotic sliding and nonequilibrium melting and freezing

Torsten Strunz and Franz-Josef Elmer
Institut für Physik, Universita¨t Basel, CH-4056 Basel, Switzerland

~Received 4 September 1997; revised manuscript received 5 February 1998!

The dynamical behavior of a weakly damped harmonic chain in a spatially periodic potential~Frenkel-
Kontorova model! under the subject of an external force is investigated. We show that the chain can be in a
spatiotemporally chaotic state called a fluid-sliding state. This is proven by calculating correlation functions
and Lyapunov spectra. An effective temperature is attributed to the fluid-sliding state. Even though the velocity
fluctuations are Gaussian distributed, the fluid-sliding state is clearly not in equilibrium because the equipar-
tition theorem is violated. We also study the transition between frozen states~stationary solutions! and molten
states~fluid-sliding states!. The transition is similar to a first-order phase transition, and it shows hysteresis.
The depinning-pinning transition~freezing! is a nucleation process. The frozen state contains usually two
domains of different particle densities. The pinning-depinning transition~melting! is caused by saddle-node
bifurcations of the stationary states. It depends on the history. Melting is accompanied by precursors, called
microslips, which reconfigurate the chain locally. Even though we investigate the dynamics at zero tempera-
ture, the behavior of the Frenkel-Kontorova model is qualitatively similar to the behavior of similar models at
nonzero temperature.@S1063-651X~98!11708-7#

PACS number~s!: 46.10.1z, 46.30.Pa, 68.35.Rh
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I. INTRODUCTION

Systems with many degrees of freedom which are pin
in some external potential are very common in conden
matter. Examples are fluid-fluid interfaces in porous me
@1,2#, flux-lattices in type-II superconductors@3#, and charge-
density waves@4# to mention only a few. Also dry friction
~i.e., solid-solid friction! belongs to this class of systems b
cause the asperities of the surfaces interlock.

A common feature of all these systems is a strongly n
linear mobility. If one applies some field or forceF on the
system, the mobility is zero below some usually well-defin
thresholdFc . Above this threshold the mobility is nonzer
In general, it is some nonlinear function of the applied for
F. The transition from a pinned system with zero mobility
a depinned one with some finite, nonzero mobility is cal
the pinning-depinning transition. It can be understood as
kind of ‘‘melting’’ which happens far from thermal equilib
rium. The process is a typical nonequilibrium one becaus
two reasons. First, there is no ground state forFÞ0, and the
pinned system has to be in some metastable state. Du
thermal fluctuations the system can overcome the barrie
the metastable state and move into another metastable
with less energy. This phenomenon leads tocreepingwith a
very low mobility. Second, beyond the pinning-depinni
transition, energy flows through the system at a constant
which is given by the mobility timesF2. This flow is usually
not small. Thus it cannot be deduced from linear respo
theory, which works only near thermal equilibrium. The m
bility of the sliding state strongly depends on the kind
energy dissipation.

The inverse process of this nonequilibrium melting is t
depinning-pinning transition, which is a kind of nonequilib-
rium ‘‘freezing.’’ Both kinds of transitions do not have t
occur at the same value of the applied forceF. The behavior
depends strongly on whether the degrees of freedom~i.e.,
flux lines, atoms, etc.! have inertia or if inertia is negligible
PRE 581063-651X/98/58~2!/1612~9!/$15.00
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compared to dissipative forces. In the case of strong diss
tion the motion is overdamped. The pinning-depinning tra
sition is in most cases of second order, and indistinguisha
from the depinning-pinning transition. Typical examples
such systems are flux lines in type-II superconductors
charge-density waves. If the motion is underdamped, hys
esis is possible because the inertia can overcome a pin
center. This is intuitively clear if one imagines the simple
model system of this kind, namely, a particle in a spatia
periodic potential@5#.

Another important aspect of the collective behavior
pinned systems is whether the potential caused by the
ning centers is regular or irregular~quenched randomness!.
Often the pinning landscape is random. This case, toge
with a purely dissipative diffusionlike dynamics, has be
studied extensively in the literature@6,7#.

The aim of this paper is to study the opposite case i
fairly simple model, namely, the Frenkel-Kontorova~FK!
model @8#. There is no quenched randomness. All pinni
centers are identical, forming a regular array. Furthermo
all pinned objects are identical and have a mass. The da
ing is assumed to be weak. We will see that weak dampin
responsible for randomness that is caused by chaotic mo
Important physical applications of the FK model are arra
of identical Josephson junctions@9#, and adsorbate layers o
clean crystal surfaces@10#.

In this paper we consider the one-dimensional FK mod
The equation of motion~in dimensionless units! reads

ẍ j1g ẋ j5xj 211xj 1122xj2b sin xj1F, ~1!

where xj is the position of particlej , g is the damping
constant,b is the strength of the external potential, andF is
the external force. The time derivative is denoted by a dot
order to avoid effects due to the boundary layers, we cho
periodic boundary conditions, i.e.,
1612 © 1998 The American Physical Society
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xj 1N5xj12pM , ~2!

where N is the number of particles andM is an arbitrary
integer. The periodic boundary conditions fixes the aver
particle distancea to a52pM /N. Because of symmetry,a
can be restricted to interval@0,p# without loss of generality.

Together with the previous paper@11#, in which we al-
ready investigated periodic and quasiperiodic solutions,
aim is to give a detailed investigation of the dynamical b
havior in the weakly damped case for long chains~i.e., N
.100).

In this paper we deal with spatiotemporal chaotic so
tions ~calledfluid-sliding states!, and the transition betwee
these solutions and the stationary states. The typical beha
is summarized in Fig. 1. Figure 1~a! shows the velocity-force
characteristic. We see hysteresis loops between three d
ent branches which belong to different types of solutio
The states with the largest average sliding velocitiesv are

FIG. 1. The velocity-force characteristic and the effective te
perature of the fluid-sliding state. The different branches belon
stationary states~SS!, fluid-sliding states~FSS!, and solid-sliding
states~SSS!. In the simulations the applied forceF was decreased
~squares and dotted lines! or increased~triangles and solid lines!

with a constant rate (uḞu51027). The velocity at each data point i
the average over a time interval of 104 time units. The upper inse
shows 20 hysteresis loops between SS and FSS from a simul
whereF was moved in the interval@0.09,0.15# forward and back-

ward at a rate ofuḞu51026. The lower inset shows the particl
velocity distribution forF50.26. The solid line shows the fit of th
data point with a Gaussian. The parameters areN5233, M
589, b52, andg50.05.
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the solid-sliding states, which are characterized by a cha
with nearly no internal vibrations. These states have
maximum possible mobility, i.e., 1/g. The solid-sliding state
becomes unstable due to first-order parametric resonancev
is below some critical value@11#.

The second type of sliding state is the fluid-sliding sta
In general, one can place all sliding states not having
maximum mobility into this category. But, strictly speakin
the name makes sense only if these states are spatiote
rally chaotic. For larger values of the damping constant t
is not the case, as we saw in the previous paper. The cha
vibration in the fluid-sliding state can be characterized by
effective temperature. The temperature of the fluid-sliding
states of Fig. 1~a! is shown in Fig. 1~b!. Even though the
distribution of the particle velocityẋ j is Gaussian@see the
inset of Fig. 1~b!# we will show that the fluid-sliding state is
a nonequilibriumstate. A very specific test to show this
the violation of the equipartition theorem for the phon
modes~see Sec. II A!.

The third type of state is the stationary one. Its mobility
zero. In order to model the creeping due to thermal acti
tion, one has to add a white-noise term to the equation
motion ~1!. We have not done this because the qualitat
behavior does not change very much as long as the the
energy is much smaller than the amplitude of the exter
potential. This is confirmed in numerical simulations of sim
lar models@10,12,13#. For example, the hysteresis seen
Fig. 1~a! still exists for nonzero but small temperatur
@10,14#. For this behavior it seems to be important that t
system has many degrees of freedom, because in the ca
N51 the hysteresis disappears even for an infinitesim
small noise amplitude@5#.

Figure 1~b! clearly shows that nonequilibrium meltin
and freezing is accompanied by an abrupt change of the t
perature of the chain. The transition is like a first-order o
in thermal equilibrium, but the pinning-depinning transitio
point is larger than the depinning-pinning transition poi
Thus hysteresis occurs. The transition points fluctuate@see
inset of Fig. 1~a!#, especially the pinning-depinning trans
tion point.

The paper is organized as follows: In Sec. II, we inves
gate in detail the fluid-sliding state. We show that it is inde
spatiotemporally chaotic. For chains witha/2p near an inte-
ger value we found a pronounced transition from a kin
dominated sliding state and the fluid-sliding state. This tr
sition is relatively sharp even though there is no hystere
But it becomes hysteretic for smallN. The depinning-
pinning transition and the pinning-depinning transition a
discussed in Sec. III. We show that nonequilibrium freez
is similar to ordinary freezing, whereas melting is clea
different. The pinning-depinning transition point depends
the stationary state. Furthermore, local rearrangements~mi-
croslips! of the chain may occur before the transition. In Se
IV, we compare our results with results of similar models

II. CHAOTIC SLIDING

Decreasing the damping constantg increases the com
plexity of the sliding state from periodic motion via quas
periodic motion~which is usually spatially chaotic; see th
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preceding paper! to spatiotemporal chaos. An example of t
latter is shown in Figure 2.

The aim of this section is to investigate and to charac
ize the chaotic-sliding state which we call thefluid-sliding
state. First of all, we see in Fig. 1~a! that the velocity-force
characteristic of this state is nearly structureless. This ha
be compared with the case of periodic and quasiperiodic
tion, where a multitude of hysteresis loops appear~see the
preceding paper!. Here there occur only hysteresis loops b
tween the solid-sliding state~where the particles are shake
so fast that they nearly do not ‘‘feel’’ the external potentia!,
the fluid-sliding state, and the stationary states.

A. Spatiotemporal chaos

Figure 2 is of course not a proof that the chain slid
chaotically. It is well known that chaotic motion is chara
terized by the sensitivity on the initial conditions. It is me
sured by the largest Lyapunov exponentlmax, which is the
rate of divergence~or convergence, if it is negative! of tra-
jectories in phase space that start out infinitely close to e
other @15#. Figure 3 shows that the fluid-sliding states
Figs. 2 and 1 are indeed temporally chaotic. But are they

FIG. 2. An example of spatiotemporal chaos. Each solid line
a snapshot of the system. The time interval between two succe
snapshots isdt54p/v (v is the average sliding velocity!. A par-
ticular snapshot is highlighted. The parameters areN5233, M
589, b52, g50.05, andF50.14.

FIG. 3. The maximum Lyapunov exponent of the fluid-slidin
state as a function of the applied forceF. The parameters areN
5144, M555, b52, andg50.05.
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spatially chaotic? In order to answer this question we h
calculated the normalized velocity correlation functionCj
defined by

Cj[
Š^ẋl ẋl 1 j&‹2Š^ ẋl&‹

2

Š^ẋl
2&‹2Š^ẋl&‹

2
, ~3!

where

Š^ f j&‹5 lim
t→`

1

tE0

t 1

N (
j 51

N

f j~ t ! dt. ~4!

For the same parameters as in Fig. 2, the result is show
Fig. 4. One clearly sees thatCj is a rapidly decaying oscil-
latory function. The envelope seems to be proportional
exp(2j/j) with a correlation lengthj'2. Because ofN@j
and lmax.0 the fluid-sliding state is spatiotemporally ch
otic.

A very strong criterion for spatiotemporal chaos is th
the number of positive Lyapunov exponents is proportio
to N for largeN. We have calculated the Lyapunov spectru
with the method described in Ref.@16# for various values of
N. Figure 5 shows the cumulative densitypN(l) of
Lyapunov exponents, i.e., the probability of finding

s
ive

FIG. 4. The normalized velocity correlation functioncj of the
fluid-sliding state. To guide the eye the numerical results~denoted
by squares! are connected by a solid line. The inset shows a lo
rithmic plot of ucj u. The straight line is the function exp(2j/2). The
parameters are the same as in Fig. 2.

FIG. 5. Lyapunov spectra for~a! the most commensurate cas
@i.e., a50) and ~b! the most incommensurate case~i.e., a/2p
→(32A5)/252 is the golden mean#. The spectra for two different
system sizes are shown. Squares and solid lines denote~a! N520
and ~b! N513, and~a! N5200 and~b! N5233. The other param-
eters areb52, g50.05, and~a! F50.13 and~b! F50.3.
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Lyapunov exponent larger thanl. The result is typical for
spatiotemporal chaos@15#. In the thermodynamic limit~i.e.,
N→`) the sequence of cumulative densitiespN converges
uniformly to p` . Thus, for largeN, the number of positive
Lyapunov exponents is indeed proportional toN. Figure 5
shows clearly that the spatiotemporally chaotic nature of
fluid-sliding state doesnot depend on the commensurabili
of the chain.

Because the fluid-sliding state is spatiotemporally chao
it makes sense to introduce an effectivetemperature. In the
dimensionless units of the equation of motion~1! it is the
average kinetic energy in the frame comoving with the cen
of mass, i.e.,

T[KK ~ ẋ j2v !2

2 L L, ~5!

wherev is the average sliding velocity,

v5Š^ẋ j&‹. ~6!

In the previous paper we derived a formula for the appl
force F in terms of the first and second moments of t
particle velocity@Eq. ~6! in Ref. @11##. With the help of this
formula the temperature can be expressed in terms of
applied force and the average sliding velocity:

T5S F

g
2v D v

2
. ~7!

Figure 1~b! shows the temperatures of the fluid-sliding sta
of the velocity-force characteristic in Fig. 1~a!.

Even though the temperature of the solid-sliding sta
and the stationary states is formally zero in accordance w
Eq. ~7!, it does not make sense to call Eq.~5! a ‘‘tempera-
ture’’ in regular, nonchaotic sliding states or stationa
states. The periodic and quasiperiodic domainlike states
example, investigated in the previous paper have also n
zero ‘‘temperature.’’

In the frame comoving with the center of mass, the ch
is shaken by the washboard wave~i.e., the external poten
tial!, and moves in a spatiotemporally chaotic way. T
Gaussian distributed velocities might suggest that the ch
is in thermal equilibrium. But is this true? This raises t
following question of general interest:Can we replace the
spatiotemporally chaotic chain by an equivalent syst
which is in thermal equilibrium? Or more generally, is it
possible to describe the chaotic attractor of a weakly dam
and strongly driven Hamiltonian system with many degre
of freedom~infinitely many in the thermodynamic limit! by
an equivalent undriven and undamped system? As a co
quence of a positive answer, one would expect that
equipartition theorem from thermodynamics holds, i.e.,
ensemble averages ofqj]H/]qj andpj]H/]pj are indepen-
dent of j @H(q1 ,p1 , . . . ,qj ,pj , . . . ) is theHamilton func-
tion, theqj ’s are the generalized coordinates, and thepj ’s are
the corresponding canonical momenta#. In numerical simula-
tions one usually replaces the ensemble average by the
poral average, assuming that the ergodicity hypothesis ho
An obvious candidate for a test of the equipartition theor
would be the particle momentum in the comoving frame, i
e
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ẋ j2v. But this is not a wise choice: because of symmetry
result has to be independent ofj . A better choice is its spatia
Fourier transform, i.e.,

p̂k[
1

N (
j 51

N

~ ẋ j2v !e2ipk j /N, k50,1, . . . ,N21. ~8!

That is, we want to check whether the average kinetic ene

ek[ lim
t→`

1

tE0

t

u p̂k~ t !u2dt ~9!

of the phonon modes is equipartitioned or not. Figure
shows that the equipartition theorem is not fulfilled@17#.
This is a clear signature for the fact that thefluid-sliding state
is a state far away from thermal equilibrium. Therefore, it is
not possible to develop a theory for this state based on e
librium thermodynamic. The violation of the equipartitio
theorem is equivalent to nonzero velocity correlations foj
Þ0, becauseek is the modulus of the Fourier transform o
Cj .

B. Transition between fluid-sliding state and kink-dominated
sliding state

When a/2p approaches an integer value, the veloci
force characteristic of the fluid-sliding state develops a re
tively sharp transition step at a characteristic value of
applied forceF. An example fora/2p51/20 is shown in
Fig. 7. For long enough chains no hysteresis is observa
For small chains we obtain a bistability between differe
types of sliding states. Similar results have been found i
generalized FK model by Braun and co-workers@10,14,18#.
The aim of this section is to answer the following obvio
questions: What is the nature of the different sliding stat
Why does the bistability depends onN? Can we understand
this transition, and where does it occur?

First we take a more detailed look at the dynamics bel
and above the transition~see Fig. 8!. The motion far below
the threshold is almost regular. It corresponds to one of
multidomain states we discussed in the previous paper. T
are two domain types: a stationary one witha50 @it is re-
sponsible for the tilted lines in Fig. 8~a!#, and a sliding one.

FIG. 6. The average kinetic energyek of the phonon modes for
three different values of the applied forceF. The parameters are th
same as in Fig. 1.
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Often the sliding domains are so small that they are actu
2p kinks, and larger sliding domains can be interpreted
clusters of 2p kinks @10#. That is, multidomain states like th
example of Fig. 8~a! are nonuniform distributions of 2p
kinks. Thus we call this state thekink-dominated sliding

FIG. 7. The transition between the fluid-sliding state and
kink-dominated sliding state. The velocity-force characteristics
N5500 ~filled symbols! and N5200 ~open symbols! are shown.
Squares and dotted lines~triangles and solid lines! indicate decreas-

ing ~increasing! applied forceF. The rateuḞu is always 1027 except
for N5500 andFP(0.26,0.29), where it is 1028. The dashed line
indicates the sound velocity, which is equal toa. The parameters
area5p/10, b52, andg50.05.

FIG. 8. The dynamics of the kink-dominated sliding state~a!
and the fluid-sliding state~b!. Several snapshots are shown taken
equidistant time steps~a! dt52p/v and ~b! dt520p/v. In each
case a particular snapshot is highlighted. The parameters are~a! F
50.2 and~b! F50.3 andN5500, M525 ~i.e., a5p/10), b
52, andg50.05.
ly
s

state. Note that there areM kinks but no antikink.
It is well known that kinks~and antikinks! cannot travel

faster than the sound velocity~which is equal to 1 in our
case!. Each kink or antikink therefore needs at leastN time
units to travel through the whole chain. After that time
chain withM kinks will be shifted by 2pM . Therefore, the
average sliding velocity of a state like the one of Fig. 8~a!
has to be less than 2pM /N5a. Figure 7 shows that it is
actually much below the sound velocity.

If the transition point is approached from below, the b
havior depends on whether the chain is long or short.
long chains with many kinks, the average sliding velocityv
starts to increase withF faster and faster. Later on the in
crease slows down. We define the transition pointFFKT as
the value ofF where the slope ofv(F) has a maximum.
After the transition point the system is in a fluid-sliding sta
@see Fig. 8~b!#. All kinks ~and antikinks! have disappeared
and the system is completely spatiotemporally chaotic.
short chain with only a few kinks still stays in the kink
dominated regime beyondFFKT . Eventually, it jumps to the
fluid-sliding state or to the solid-sliding state~see Fig. 7!. A
hysteresis occurs, and the chain goes back to the k
dominated state atF'FFKT .

At the transition point the sliding velocity strongly fluc
tuates. These fluctuations already set in much below the t
sition point. They lead to a larger value of the average s
ing velocity compared to the value for small chains.
typical example is shown in Fig. 9. One sees bursts of ac
ity above a level given by the value ofv for small chains
~see Fig. 7!. A detailed look into the dynamics of the cha
reveals that an increase ofv is caused by theproduction of
kink-antikink pairs @10,14,18#. These pairs usually appea
behind a 2p-kink cluster. This may be the reason why, f
small chains, the kink-dominated states survive beyond
transition point, because the probability for a 2p-kink cluster
is too small. Each kink and antikink contributes to the slidi
velocity of the chain. That is,v is given by

v52p
M12Np

N
ck , ~10!

whereck is the velocity of the kinks and antikinks, andNp is

e
r

t

FIG. 9. The average sliding velocityv ~averaged over intervals
of 200 time units! as function of time. The velocityv0 of the qui-
escent phase is denoted by a dotted line. The parameters aN
5500, M525 ~i.e., a5p/10), b52, g50.05, andF50.24.
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the number of kink-antikink pairs. In the quiescent sta
without kink-antikink pairs, the average sliding velocity
given byv052pMck /N. Thus the ratiov/(v0 /M ) directly
gives the total number of kinks and antikinks~i.e.,
M12Np). Figure 10 depicts the distribution of the slidin
velocity shown in Fig. 9. In addition to the large peak at t
quiescent state, one clearly sees small peaks forNp51 and
2.

For a approaching zero~or any other integer multiple o
2p) the average sliding velocity of the kink-dominated sli
ing state also approaches zero. It disappears ata50. Thus
the system goes from the fluid-sliding state directly to a s
tionary state whenF is decreased below the transition poi
FFKT . If the value ofb is not too large@i.e., b5O(1)#, the
stationary state will be the ground state@19#. The transition is
often accompanied by transients where a few kink-antik
pairs survive for a considerably long time. But in all sim
lations these pairs eventually disappeared.

We found that the transition pointFFKT is nearly indepen-
dent ofa ~as long asa/2p is near an integer value!. Table I
shows thatFFKT increases withb weaker than linearly.

In order to understand the transition between the flu
sliding state and the kink-dominated sliding state we co

FIG. 10. The velocity distribution in the kink-dominated regim
near the transition point. The statistics is obtained from 50
samples. Each sample is the sliding velocityv averaged over 200
time units. The velocity of the quiescent phase is given byv0

'0.1457. The numbered vertical lines denote the numberNp of
kink-antikink pairs. The parameters are the same as in Fig. 9.

TABLE I. The transition pointFFKT between fluid-sliding states
and kink-dominated sliding states and the transition pointF2 be-
tween the running state and the locked state of a single particle
periodic potential under the influence of weak noise. The par
eters areN5500, M50, andg50.05.

b FFKT F2

0.25 0.096 0.0840
0.5 0.130 0.1187
1 0.187 0.1679
2 0.276 0.2374
3 0.362 0.2908
4 0.444 0.3358
5 0.519 0.3754
e

-

k

-
-

pare the FK model with a simpler model, namely, one p
ticle in a tilted spatially periodic potential plus additive whi
noise. This model was studied in detail by Risken and Vo
mer @5,20#. The single particle and the noise correspond
the center of mass of the FK model and the chaotic motion
the internal degrees of freedom, respectively. Of course
noise is neither additive nor white. Its strength depends
the state. It is obvious that the solid-sliding state and
stationary state of the FK model correspond to the runn
state and the locked state of the simple model in the abse
of noise. We suggest that the fluid-sliding state and the ki
dominated state of the FK model also correspond to the r
ning and locked states of the simple model, but now w
noise. Risken and Vollmer showed that the bistability b
tween the running state and the locked state disappears
for infinitesimally weak noise. There is a well-defined tra
sition point F2 which is smeared out for increasing nois
strength. Forg!Ab, it is given by

F253.3576gAb. ~11!

Thus we expectFFKT'F2. Table I shows that this is indee
the case, especially for small values ofb.

III. NONEQUILIBRIUM FREEZING AND MELTING

The aim of this section is to take a closer look at t
hysteresis loop between stationary states and the fluid-sli
state~see Fig. 1!. There are two different types of transition
The first is depinning-pinning~DP! transition, where the
~chaotically! sliding chain turns into a stationary one. It is
kind of nonequilibrium freezing and, as in usual first-ord
phase transitions, the chain can be ‘‘supercooled’’ below
transition pointFDP. That is, forF slightly below FDP the
chain does not freeze immediately. It takes a while unti
critical nucleus has appeared. The second transition is
pinning-depinning~PD! transition. The transition pointFPD
depends on the stationary state and therefore on the his
of the system. In an actual experiment where one swe
through the hysteresis loop at a finite rate, one will theref
not obtain well-defined transitions points, but more or le
broad distributions. An example of such a~numerical! ex-
periment is shown in the inset of Fig. 1~a!. It is typical that
the distribution ofFDP is narrower than the distribution o
FPD. For a quasistatic sweep the distribution ofFDP be-
comes sharp, whereas the width of the distribution ofFPD is
nearly independent on the sweeping rate.

From equilibrium thermodynamics it is well known tha
melting and freezing occur at the same temperature, and
transition is of first order. In our case, far from thermal eq
librium, the situation is different. In the overdamped limit th
pinning-depinning transition pointFPD is identical with the
depinning-pinning transitionFDP, but the transition is of
second order@21,22#. In the underdamped case we have
stability between sliding states and stationary states,
FDP,FPD.

A further characteristic feature of nonequilibrium meltin
and freezing is the change of the effective temperature@see,
e.g., Fig. 1~b!#. This is a general property which is also foun
in similar models with nonzero temperature of the enviro
ment@10,12,13#. That is, the fluid-sliding state has an effe
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tive temperature which isindependentof the temperature o
the environment as long as the latter is considerably less
the former. The effective temperature is a measure of
enhanced energy flow due to the excitation of phonons.

A. Freezing: Depinning-pinning transition

We have studied in detail the depinning-pinning transit
from a fluid-sliding state to a stationary state. We have c
sen a value ofa where the fluid-sliding state is complete
spatiotemporally chaotic. As in an ordinary first-order pha
transition at thermal equilibrium, the transition is caused b
nucleation process. That is, a small portion of the chain be
comes stationary, and the fronts between this station
nucleus and the sliding chain propagate into the chain.
example of such a nucleation process is shown in Fig.
One sees that states appear behind the fronts which ca
characterized by an average particle distancea ~or density
1/a) which is roughly constant. Note that the values ofa
behind both fronts have to be different. This can be und
stood by the following argument. In the previous paper
saw that because of the conservation of the number of
ticles the velocity of a front traveling from one particle to th
next is given byc5(v12v2)/(a22a1), where the average
particle distance and the average sliding velocity on b
sides of the front are given bya1/2 and v1/2, respectively.
The chaotic sliding state is characterized bya152pM /N
andv1.0. For the stationary state,v250 holds. In order to
have fronts traveling in opposite directions~see Fig. 11! the
average particle distances of the stationary states have
different ~one larger thana and one smaller thana). We
found that they are always the nearest integer multiples op,
that is, for 0,a,p they are zero andp. From this consid-
eration it is clear that after the depinning-pinning transiti
the system cannot be in the ground state@19#, which is char-
acterized by a single domain with a uniforma. Instead, the
chain will be in a stationarytwo-domain statewhich is not
quite perfect because each domain contains defects at
density.

A similar depinning-pinning transition was found in
seemingly completely different model, namely, the quenc

FIG. 11. Nucleation of a stationary state in the depinnin
pinning transitions. The time step between two snapshots isdt
54p/v. The snapshot just before nucleation is highlighted. T
parameters areN5500, M5160, b52, g50.05, and F
50.097.
an
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Kadar-Parisi-Zhang equation with negative nonlinearity@23#.
It is a nonlinear diffusion equation which models the surfa
growth in disordered media. Here the dissipation is stro
and the randomness of the pinning landscape is import
contrary to the weakly damped FK model. Nevertheless
pinning-depinning transition is of first order, and the sta
which freezes out of the sliding state is a two-domain sta
as in the FK model~compare Fig. 2 of Ref.@23# with Fig.
11!.

The duration of freezingtD is the sum of the nucleation
time tN and the growth timetG . The nucleation time is the
time that evolves until a critical nucleus appears. A critic
nucleus is a nucleus which is large enough to grow into
fluid-sliding state. The nucleation timetN will be a Poisson
distribution if the probability for the appearance of a critic
nucleus in a short time step is small, i.e.,

r~ tN!5u21e2tN /u. ~12!

It is well known that the average and standard deviations
a Poisson-distributed value are identical, i.e.,^tN&5DtN5u.
For systems much larger than the critical nucleus, the pr
ability for nucleation increases linearly with the system si
i.e., u;1/N.

The time tG for a critical nucleus to grow up to the sta
tionary state does not fluctuate as strongly astN , because it
is roughly given by the system size divided by the sum
front velocities. Thuŝ tG&;N.

Figure 12 shows that the nucleation process is ind
characterized by a Poisson distribution withu;1/N. From
fits of the curves shown in Fig. 12, we founduN5(2.1
60.1)3106. One can also see a shift of the distribution f
increasingN to larger values oftD . This reflects the fact tha
^tG& increases withN.

For values ofa between 2.45 and 3.09~and b52, g
50.05, N5500, andF'FFKT) we found that the fluid-
sliding state changes its character. A domain appears w
the particles are stationary~with two particles per potentia
well!. This domain which is surrounded by spatiotempo
chaos has a constant size, and travels through the chain
a constant velocity. The transition from this so-calledtraffic-
jam state@10# to a stationary one also occurs via nucleatio
The critical nucleus always seems to appear at the bac

-

e

FIG. 12. Cumulative density of the duration timestD . Each
curve is obtained from 500 numerical nucleation experiments.
parameters area516p/25, b52, g50.05, andF50.097.
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the stationary domain. It reverses the propagation direc
of the front. That is, the chaotic state stops traveling into
stationary one. Instead a front propagates into the cha
state, leaving behind a stationary state different from the
ready existing one. Thus the result is again a stationary t
domain state where one domain already exists at least
tially before the transition. The nucleation probability
roughly independent of the system sizeN because the nucle
ation site is predetermined.

B. Melting: Pinning-depinning transition

The transition from a stationary chain to a sliding one
the pinning-depinning transition. The transition pointFPD
depends on the stationary state. It corresponds to a sa
node bifurcation where the particular stationary state ann
lates with an unstable stationary state. In the overdam
limit FPD is uniquely defined by the saddle-node bifurcati
of the last stable stationary state, which is usually the s
which develops adiabatically out of the ground state forF
50. The disappearances of the other stationary states
saddle-node bifurcation lead only to more or less local re
rangements of the chain. We call such a rearrangeme
microslip. A microslip changes the center of mass of t
chain but does not lead to sliding. An example is shown
Fig. 13. This behavior and the statistics of microslips ha
been studied mainly in models with a random external
tential @24,25#.

In the underdamped regime the energy gained from a
cal rearrangement is not dissipated immediately. This m
lead to an avalanche which turns the whole system int
sliding state. Whether a saddle-node bifurcation leads
microslip or to a transition to sliding depends on the stati
ary state and on the damping constantg. For each stationary
state one can presumably find a critical valuegc which dis-
tinguishes both cases: Forg.gc we obtain a microslip; oth-
erwise we obtain a transition to sliding. In our simulatio
we found only a few~not more than three! microslips forg
50.05 andb52. The pinning-depinning transition point de
pends strongly on the history of the system, because the
tual value ofFPD depends on the stationary state. Sweep
several times through the pinning-depinning hysteresis loo

FIG. 13. An example of a microslip. Snapshots at an interva
ten time units are shown. The inset showsxj for j P@160,233#. The
parameters areN5233, M589, b52, g50.05, andF from
0.115 54 until 0.115 575, at a rate of 1027.
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we find a broad distribution ofFPD even for very small
sweep rates.

IV. SUMMARY AND CONCLUDING REMARKS

In this paper we have shown that, in theweaklydamped
and strongly driven FK model, spatiotemporal chaos appe
This chaotic state, called thefluid-sliding state, has an effec-
tive temperature which reflects the fact that phonons are
cited. This is contrasted by the solid-sliding state, where
phonons are excited@26#. The excitation of phonons open
up additional channels of dissipation. Thus friction in t
fluid-sliding state is larger than in the solid-sliding state.

The velocity-force characteristic shows a pronounc
transition if the average particle distancea is near but not
identical to an integer multiple of the period of the extern
potential. It is a transition between the kink-dominated sl
ing state and the fluid-sliding state. Below the transiti
point FFKT, sliding is caused by the propagation of 2p kinks.
Approaching the transition point from below leads to an
creasing production of kink-antikink pairs. Above the tran
tion point all kinks and antikinks disappear, and the chain
in the fluid-sliding state with an average sliding veloci
which depends only weakly on the average particle den
1/a. In the kink-dominated regime the average sliding velo
ity is proportional toa mod 2p. The transition pointFFKT is
roughly independent ofa. For small values ofb it is very
well approximated by the transition point between the ru
ning and locked solution of anN51 FK model with infini-
tesimally small additive white noise@i.e., Eq. ~11!#. This
raises the question of whether the dynamics can be redu
to a center-of-mass motion plus some nontrivial~e.g., col-
ored, state-dependent! noise term.

The nonequilibrium freezing~i.e., the transition from slid-
ing to stationarity! of the fluid-sliding state is a nucleatio
process. The resulting stationary state has two domain
different particle densities.

The nonequilibrium melting~i.e., the transition from a
stationary state to sliding! of such a stationary state corre
sponds to a saddle-node bifurcation where the stationary
of course, the stable state annihilates with its unstable co
terpart. In the case of nonzero environmental temperature
transition occurs a bit earlier because thermal activat
overcomes the barrier, which decreases to zero at the sa
node bifurcation. Not all saddle-node bifurcations lead
melting. They may lead to a local rearrangement of the p
ticle configuration called a microslip. The pinning-depinnin
transition point depends on the history because each sta
ary state has another bifurcation point.

Our results are qualitatively very similar to the results
similar models. Persson studied a two-dimensional Lenna
Jones liquid on a corrugated potential with square symm
at a nonzero temperature@12#. He varied the temperatur
between one-third and one-half of the melting temperat
~the thermal energy was roughly one-tenth of the activat
energy for single particle diffusion!. He obtained velocity-
force characteristics and effective temperature plots sim
to Fig 1. Because of the relatively high temperature of
environment, he did not find hysteresis between the so
sliding state and the fluid-sliding state. As in the FK mod
the transition from the fluid-sliding state to a stationary st
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is also a nucleation process. Persson found that it oc
when the effective temperature is equal to the melting te
perature at thermal equilibrium. Because the velocity dis
bution of the fluid-sliding state was Gaussian, he argued
the fluid-sliding state is in a kind of thermal equilibrium
Therefore it has to freeze below the melting temperature.
as we have seen in Sec. II A, Gaussian distributed veloc
do not imply a quasithermal equilibrium. It would be inte
esting to examine whether in Persson’s model the equip
tion theorem of the phonon modes is fulfilled or not. This
clearly a better test on thermal equilibrium.

Granato, Baldan, and Ying studied a two-dimensio
Frenkel-Kontorova model at nonzero temperatures@13#. The
external potential is corrugated only in the direction of t
applied force. Also, the particles can move only in this
rection. They did simulations at a temperature which cor
sponds to one-fourth of the activation energy, and which
roughly one-fifth of the melting temperature. They al
found a behavior as in Fig. 1, again without a hystere
between the solid-sliding state and fluid-sliding state. Th
also confirmed the observation of Persson that the trans
from sliding to stationarity occurs at the melting temperatu

Braun and co-workers investigated a generalized
model that is quite similar to the model studied by Pers
@10,14,18#. The main differences are that the substrate pot
tial is anharmonic and the interaction potential is an ex
nential repulsion. They did the simulations mainly for tw
different temperatures which correspond to 1023 and 1

20 of
the activation energy for single particle diffusion. They r
ported results for one-dimensional chains of atoms as we
b,
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for two-dimensional layers. There seems to be no qualita
differences between one and two dimensions. Ag
velocity-force characteristics and effective temperature p
are similar to our results. They found a hysteresis betw
solid sliding and fluid sliding. Its width decreases with th
environmental temperature and disappears eventually~at a
temperature which is roughly one-fifth of the activation ba
rier for hopping of uncoupled single particles!. Near fully
commensurate particle densities, they found a transition~de-
noted byFpair) which is similar to the transition from the
kink-dominated sliding regime to the fluid-sliding regime
the FK model. Because their chain was short~i.e., N5105)
this transition shows hysteresis for very low temperatur
Instead of a fully chaotic fluid-sliding regime they alway
found two-domain states with alternatively running a
locked particles~traffic-jam regime!. They also measured th
transition pointFpair as function of the damping constan
@18#. It increases roughly linear with the damping consta
but the authors seemed not to be aware that Eq.~11! is again
a remarkably good approximation~i.e., errors are less tha
10%! for Fpair.
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