PHYSICAL REVIEW E VOLUME 58, NUMBER 2 AUGUST 1998

Driven Frenkel-Kontorova model. 1. Chaotic sliding and nonequilibrium melting and freezing
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The dynamical behavior of a weakly damped harmonic chain in a spatially periodic potérgakel-
Kontorova model under the subject of an external force is investigated. We show that the chain can be in a
spatiotemporally chaotic state called a fluid-sliding state. This is proven by calculating correlation functions
and Lyapunov spectra. An effective temperature is attributed to the fluid-sliding state. Even though the velocity
fluctuations are Gaussian distributed, the fluid-sliding state is clearly not in equilibrium because the equipar-
tition theorem is violated. We also study the transition between frozen sstimnary solutionsand molten
states(fluid-sliding states The transition is similar to a first-order phase transition, and it shows hysteresis.
The depinning-pinning transitioffreezing is a nucleation process. The frozen state contains usually two
domains of different particle densities. The pinning-depinning transitioelting) is caused by saddle-node
bifurcations of the stationary states. It depends on the history. Melting is accompanied by precursors, called
microslips, which reconfigurate the chain locally. Even though we investigate the dynamics at zero tempera-
ture, the behavior of the Frenkel-Kontorova model is qualitatively similar to the behavior of similar models at
nonzero temperatur@S1063-651X98)11708-1

PACS numbgs): 46.10+z, 46.30.Pa, 68.35.Rh

[. INTRODUCTION compared to dissipative forces. In the case of strong dissipa-
tion the motion is overdamped. The pinning-depinning tran-
Systems with many degrees of freedom which are pinnegition is in most cases of second order, and indistinguishable
in some external potential are very common in condenseéfom the depinning-pinning transition. Typical examples of
matter. Examples are fluid-fluid interfaces in porous mediguch systems are flux lines in type-ll superconductors and
[1,2], flux-lattices in type-Il superconductdi3], and charge- charge-density waves. If the motion is underdamped, hyster-
density waveg4] to mention only a few. Also dry friction €sis is possible because the inertia can overcome a pinning
(i.e., solid-solid friction belongs to this class of systems be- center. This is intuitively clear if one imagines the simplest

cause the asperities of the surfaces interlock. model system of this kind, namely, a particle in a spatially
A common feature of all these systems is a strongly nonperiodic pot_entla[5]. _ _
linear mobility. If one applies some field or forée on the Another important aspect of the collective behavior of

system, the mobility is zero below some usually well-definedpinned systems is whether the potential caused by the pin-
thresholdF .. Above this threshold the mobility is nonzero. ning centers is regular or irreguléguenched randomness

In general, it is some nonlinear function of the applied forceOften the pinning landscape is random. This case, together
F. The transition from a pinned system with zero mobility to With a purely dissipative diffusionlike dynamics, has been
a depinned one with some finite, nonzero mobility is calledstudied extensively in the literatufé,7].

the pinning-depinning transitionlt can be understood as a  The aim of this paper is to study the opposite case in a
kind of “melting” which happens far from thermal equilib- fairly simple model, namely, the Frenkel-Kontorov&K)
rium. The process is a typical nonequilibrium one because ofodel [8]. There is no quenched randomness. All pinning
two reasons. First, there is no ground StatengfO, and the centers are identical, forming a regular array. Furthermore,
pinned system has to be in some metastable state. Due &l pinned objects are identical and have a mass. The damp-
thermal fluctuations the system can overcome the barrier did is assumed to be weak. We will see that weak damping is
the metastable state and move into another metastable stdgsponsible for randomness that is caused by chaotic motion.
with less energy. This phenomenon leadsteepingwith a  Important physical applications of the FK model are arrays
very low mobility. Second, beyond the pinning-depinning Of identical Josephson junctiofi8], and adsorbate layers on
transition, energy flows through the system at a constant ratgean crystal surfaced.0].

which is given by the mobility timeE2. This flow is usually In this paper we consider the one-dimensional FK model.
not small. Thus it cannot be deduced from linear responséhe equation of motiortin dimensionless unijsreads

theory, which works only near thermal equilibrium. The mo-
bility of the sliding state strongly depends on the kind of
energy dissipation.

The inverse process of this nonequilibrium melting is the
depinning-pinning transitionwhich is a kind of nonequilib- wherex; is the position of particlg, v is the damping
rium “freezing.” Both kinds of transitions do not have to constantp is the strength of the external potential, &nhds
occur at the same value of the applied foFceThe behavior the external force. The time derivative is denoted by a dot. In
depends strongly on whether the degrees of freedicen ~ order to avoid effects due to the boundary layers, we choose
flux lines, atoms, etg.have inertia or if inertia is negligible periodic boundary conditions, i.e.,

XJ+’}/X]:X],1+XJ+1_2XJ_b SII’IXJ-I-F, (1)
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the solid-sliding stateswhich are characterized by a chain

~ 8 with nearly no internal vibrations. These states have the
- 7" maximum possible mobility, i.e., 3/ The solid-sliding state
+ becomes unstable due to first-order parametric resonance if
S is below some critical valugl1].
o The second type of sliding state is the fluid-sliding state.
> In general, one can place all sliding states not having the
© maximum mobility into this category. But, strictly speaking,
8’ the name makes sense only if these states are spatiotempo-
GL) rally chaotic. For larger values of the damping constant this
> is not the case, as we saw in the previous paper. The chaotic
o OO > o o o5 oh vibration in the fluid-sliding state can be characterized by an
: : . ) : ) effective temperatureThe temperature of the fluid-sliding
(b) Opp|led force F states of Fig. @ is shown in Fig. 1b). Even though the
6 . L L distribution of the particle velocitykj is Gaussiar{see the
inset of Fig. 1b)] we will show that the fluid-sliding state is
= 54 - a nonequilibriumstate. A very specific test to show this is
o 4_§ i the violation of the equipartition theorem for the phonon
S 2 modes(see Sec. Il A
o 3] % L The third type of state is the stationary one. Its mobility is
6 © zero. In order to model the creeping due to thermal activa-
Q 24 - tion, one has to add a white-noise term to the equation of
& motion (1). We have not done this because the qualitative
9 M B behavior does not change very much as long as the thermal
0 g - energy is much smaller than the amplitude of the external
0.0 0.1 0.2 0.3 0.4 potential. This is confirmed in numerical simulations of simi-

applied force F lar models[10,12,13. For example, the hysteresis seen in
Fig. 1(a) still exists for nonzero but small temperatures
FIG. 1. The velocity-force characteristic and the effective tem-[10,14]. For this behavior it seems to be important that the
perature of the fluid-sliding state. The different branches belong t@®ystem has many degrees of freedom, because in the case of
stationary state$¢S9, fluid-sliding states(FS9, and solid-sliding N=1 the hysteresis disappears even for an infinitesimally
states(SSS. In the simulations the applied forde was decreased small noise amplitudg5].
(squares and dotted linesr increasedtriangles and solid lings Figure Ib) clearly shows that nonequilibrium melting
with a constant rate|E|=10"7). The velocity at each data pointis and freezing is accompanied by an abrupt change of the tem-
the average over a time interval of1®me units. The upper inset perature of the chain. The transition is like a first-order one
shows 20 hysteresis loops between SS and FSS from a simulatid thermal equilibrium, but the pinning-depinning transition
whereF was moved in the intervdl0.09,0.15 forward and back- ~point is larger than the depinning-pinning transition point.
ward at a rate ofF|=10". The lower inset shows the particle 1Nus hysteresis occurs. The transition points fluctiisee

velocity distribution forF =0.26. The solid line shows the fit of the INs€t of Fig. 1a)], especially the pinning-depinning transi-

data point with a Gaussian. The parameters Mre233, M tion point. _ _ _ _
=89, b=2, andy=0.05. The paper is organized as follows: In Sec. Il, we investi-

gate in detail the fluid-sliding state. We show that it is indeed
spatiotemporally chaotic. For chains w2 near an inte-

ger value we found a pronounced transition from a kink-
] ) ) . dominated sliding state and the fluid-sliding state. This tran-
whereN is the number of particles anéll is an arbitrary  sition is relatively sharp even though there is no hysteresis.
integer. The periodic boundary conditions fixes the averaggut it becomes hysteretic for smaM. The depinning-

particle distancea to a=27M/N. Because of symmetry  pinning transition and the pinning-depinning transition are
can be restricted to intervfD,] without loss of generality. giscussed in Sec. Ill. We show that nonequilibrium freezing

Together with the previous papgt1], in which we al- s similar to ordinary freezing, whereas melting is clearly

ready investigated periodic and quasiperiodic solutions, th@jfferent. The pinning-depinning transition point depends on
aim is to give a detailed investigation of the dynamical be-the stationary state. Furthermore, local rearrangem@nits

havior in the weakly damped case for long chaihe., N croslips of the chain may occur before the transition. In Sec.

>100). _ _ _ IV, we compare our results with results of similar models.
In this paper we deal with spatiotemporal chaotic solu-

tions (calledfluid-sliding statey and the transition between
these solutions and the stationary states. The typical behavior
is summarized in Fig. 1. Figurgd shows the velocity-force
characteristic. We see hysteresis loops between three differ- Decreasing the damping constaptincreases the com-
ent branches which belong to different types of solutionsplexity of the sliding state from periodic motion via quasi-
The states with the largest average sliding velocitieare  periodic motion(which is usually spatially chaotic; see the

Xj+N:Xj+27TM, (2)

Il. CHAOTIC SLIDING
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FIG. 4. The normalized velocity correlation functiap of the
fluid-sliding state. To guide the eye the numerical res(denoted

O T ) I

6800 6850 6900, 6950 7000 by squaresare connected by a solid line. The inset shows a loga-
X;—q] rithmic plot of |c;|. The straight line is the function exp(/2). The

parameters are the same as in Fig. 2.
FIG. 2. An example of spatiotemporal chaos. Each solid line is

a snapshot of the system. The time interval between two successi\@atially chaotic? In order to answer this question we have

snapshots igt=4m/v (v is the average sliding velocityA par-  calculated the normalized velocity correlation functiGn

ticular snapshot is highlighted. The parameters [dre233, M defined by

=89, b=2, vy=0.05, andF=0.14.

_ <<Xlxl+j>>_<<xl>>2
preceding papeto spatiotemporal chaos. An example of the C=—" . e 3
latter is shown in Figure 2. XN =Lxi))
The aim of this section is to investigate and to character- h
ize the chaotic-sliding state which we call tRaid-sliding where
state First of all, we see in Fig. (B) that the velocity-force N
characteristic of this state is nearly structureless. This has to (F7)y=lim EJ'T 1 S f.(t) dt (4)
be compared with the case of periodic and quasiperiodic mo- ! s TJo N1 ! '
tion, where a multitude of hysteresis loops appéae the
preceding paper Here there occur only hysteresis 100ps be-gqr the same parameters as in Fig. 2, the result is shown in
tween the solid-sliding stat@vh?re the particles are shal_<en Fig. 4. One clearly sees thay, is a rapidly decaying oscil-
so fast that they nearly do not “feel” the external potential |atory function. The envelope seems to be proportional to
the fluid-sliding state, and the stationary states. exp(-j/&) with a correlation lengthé~2. Because oN> ¢
and \ ., 0 the fluid-sliding state is spatiotemporally cha-
A. Spatiotemporal chaos otic.
. . L A very strong criterion for spatiotemporal chaos is that
e e 1, S rmber of postive Lyapuroy exponets  proporiond
terized by the sensitivity on the initial conditions. It is mea- to N for largeN. We have calculated the Lyapunov spectrum

sured by the largest Lyapunov expon which is the with the method described in Réfl6] for various values of
ANty . . .

rate of divergencéor convergence, if it is negatiyef tra- N'aFl'J%Lé(/e e5x i?]g\;\vtss t?i Cl:f?; U|atr'gte)a:iﬁtns'g“(gr)] di?\f a

jectories in phase space that start out infinitely close to eachy P P o P y 9

other [15]. Figure 3 shows that the fluid-sliding states in

. . . a b
Figs. 2 and 1 are indeed temporally chaotic. But are they also () . ) 10 (b) 0 L
I 1 . 1 L
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0.10 0.15 0.20 0.25 0.30 0.35 FIG. 5. Lyapunov spectra fdia) the most commensurate case
F [i.e., a=0) and (b) the most incommensurate cagee., a/2x

—(3—/5)/2=2 is the golden mednThe spectra for two different
FIG. 3. The maximum Lyapunov exponent of the fluid-sliding system sizes are shown. Squares and solid lines déaoté= 20
state as a function of the applied forEe The parameters ard and(b) N=13, and(a) N=200 and(b) N=233. The other param-
=144, M=55, b=2, andy=0.05. eters aredb=2, y=0.05, and(@ F=0.13 and(b) F=0.3.
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Lyapunov exponent larger than The result is typical for 1 ! L
spatiotemporal chad45]. In the thermodynamic limiti.e., oaeoabeas™®
N—o) the sequence of cumulative densitjgs converges 0.051 ey i
uniformly to p... Thus, for largeN, the number of positive 0.04 ety F=0.26 |
Lyapunov exponents is indeed proportionalNo Figure 5 neo g Wme-""‘"
shows clearly that the spatiotemporally chaotic nature of the (Dx 0.03 *PaagPesseotee P
fluid-sliding state doesot depend on the commensurability w,.un-‘""“’"" F=0.21
of the chain. 0027 e -
Because the fluid-sliding state is spatiotemporally chaotic, o O‘l";mnm M i
it makes sense to introduce an effectteenperature In the ) F=0.16
dimensionless units of the equation of moti@) it is the 0.00 . : :
average kinetic energy in the frame comoving with the center 0 20 40 60
of mass, i.e., k
: 2 FIG. 6. The average kinetic energy of the phonon modes for
(X;—v)
T= 'T , (5) three different values of the applied forEe The parameters are the
same as in Fig. 1.

whereu is the average sliding velocity, kj —uv. But this is not a wise choice: because of symmetry the

P 6 result has to be independentjofA better choice is its spatial
v ={(X})). ®  Fourier transform, i.e.,

In the previous paper we derived a formula for the applied 1 N

force F in terms of the first and second moments of the == > (x—v)e?™IN k=01,...N-1. (8§
particle velocity[Eq. (6) in Ref.[11]]. With the help of this N =1

formula the temperature can be expressed in terms of the

applied force and the average sliding velocity: That is, we want to check whether the average kinetic energy
F v R A I N 5
T= 5 V)7 (7 ekEJ-[Tl 71y |pk(D)]*dt 9)

Figure Xb) shows the temperatures of the fluid-sliding statesyf the phonon modes is equipartitioned or not. Figure 6

of the velocity-force characteristic in Fig@. shows that the equipartition theorem is not fulfillgi7).
Even though the temperature of the solid-sliding stateshis is a clear signature for the fact that fhed-sliding state

and the stationary states is formally zero in accordance withs 5 state far away from thermal equilibriuriherefore, it is

Eq. (7), it does not make sense to call H§) a “tempera- ot possible to develop a theory for this state based on equi-

ture” in regular, nonchaotic sliding states or stationary|ipriym thermodynamic. The violation of the equipartition

states. The periodic and quasiperiodic domainlike states, fqheorem is equivalent to nonzero velocity correlationsjfor

example, investigated in the previous paper have also nonz g pecause, is the modulus of the Fourier transform of
zero “temperature.” C;.

In the frame comoving with the center of mass, the chain
is shaken by the washboard waties., the external poten-
tial), and moves in a spatiotemporally chaotic way. The
Gaussian distributed velocities might suggest that the chain
is in thermal equilibrium. But is this true? This raises the When a/27 approaches an integer value, the velocity-
following question of general interestan we replace the force characteristic of the fluid-sliding state develops a rela-
spatiotemporally chaotic chain by an equivalent systentively sharp transition step at a characteristic value of the
which is in thermal equilibriurd@ Or more generally, is it applied forceF. An example fora/27=1/20 is shown in
possible to describe the chaotic attractor of a weakly dampeHig. 7. For long enough chains no hysteresis is observable.
and strongly driven Hamiltonian system with many degreed~or small chains we obtain a bistability between different
of freedom(infinitely many in the thermodynamic limiby  types of sliding states. Similar results have been found in a
an equivalent undriven and undamped system? As a consgeneralized FK model by Braun and co-workgt§,14,18.
guence of a positive answer, one would expect that th&he aim of this section is to answer the following obvious
equipartition theorem from thermodynamics holds, i.e., thequestions: What is the nature of the different sliding states?
ensemble averages gfdH/dq; andp;dH/dp; are indepen- Why does the bistability depends dt? Can we understand
dent ofj [H(Qy,ps1, ... 4j.Pj, ...) is theHamilton func-  this transition, and where does it occur?
tion, theq;'s are the generalized coordinates, andgjie are First we take a more detailed look at the dynamics below
the corresponding canonical momenta numerical simula- and above the transitiofsee Fig. 8 The motion far below
tions one usually replaces the ensemble average by the terthe threshold is almost regular. It corresponds to one of the
poral average, assuming that the ergodicity hypothesis holdsultidomain states we discussed in the previous paper. There
An obvious candidate for a test of the equipartition theoremare two domain types: a stationary one wék 0 [it is re-
would be the particle momentum in the comoving frame, i.e. sponsible for the tilted lines in Fig.(&], and a sliding one.

B. Transition between fluid-sliding state and kink-dominated
sliding state
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FIG. 7. The transition between the fluid-sliding state and the FIG. 9. The average sliding velocity (averaged over intervals
kink-dominated sliding state. The velocity-force characteristics forof 200 time unitg as function of time. The velocity, of the qui-
N=500 (filled symbol3 and N=200 (open symbolsare shown. e€scent phase is denoted by a dotted line. The parameterd are
Squares and dotted linésiangles and solid lingsndicate decreas- =500, M =25 (i.e.,,a=x/10), b=2, y=0.05, andF=0.24.

ing (increasing applied forceF. The ratgF| is always 107 except

for N=500 andF € (0.26,0.29), where it is 1I0. The dashed line
indicates the sound velocity, which is equalaoThe parameters
area= /10, b=2, andy=0.05.

state Note that there ar® kinks but no antikink.

It is well known that kinks(and antikink$ cannot travel
faster than the sound velocityvhich is equal to 1 in our
cas@. Each kink or antikink therefore needs at lebistime
units to travel through the whole chain. After that time a
Often the sliding domains are so small that they are actuallghain withM kinks will be shifted by 2rM. Therefore, the
27 kinks, and larger sliding domains can be interpreted agverage sliding velocity of a state like the one of Fi¢a)8
clusters of 2r kinks[10]. That is, multidomain states like the has to be less than@V/N=a. Figure 7 shows that it is
example of Fig. &) are nonuniform distributions of 2  actually much below the sound velocity.
kinks. Thus we call this state thkink-dominated sliding If the transition point is approached from below, the be-

havior depends on whether the chain is long or short. For
(a) long chains with many kinks, the average sliding veloeity
500 - starts to increase witk faster and faster. Later on the in-
crease slows down. We define the transition péiptr as
400 - the value ofF where the slope of (F) has a maximum.
200 | After the transition point the system is in a fluid-sliding state
: [see Fig. &)]. All kinks (and antikink$ have disappeared,
200+ i and the system is completely spatiotemporally chaotic. A
short chain with only a few kinks still stays in the kink-
100 1 - dominated regime beyorid:«r. Eventually, it jumps to the
fluid-sliding state or to the solid-sliding stateee Fig. 7. A
1500 1540 1580 1620 1660 760 hysteresis occurs, and the chain goes back to the kink-
X.—Oj dominated state & ~Fggr.
(b) J At the transition point the sliding velocity strongly fluc-
tuates. These fluctuations already set in much below the tran-
400 i sition point. They lead to a larger value of the average slid-
ing velocity compared to the value for small chains. A
typical example is shown in Fig. 9. One sees bursts of activ-
" ity above a level given by the value of for small chains

2001 (see Fig. 7. A detailed look into the dynamics of the chain
reveals that an increase ofis caused by th@roduction of
kink-antikink pairs[10,14,18. These pairs usually appear
behind a 2r-kink cluster. This may be the reason why, for
. small chains, the kink-dominated states survive beyond the

XJ.-OJ transition point, because the probability for a-kink cluster
is too small. Each kink and antikink contributes to the sliding

FIG. 8. The dynamics of the kink-dominated sliding stéde  velocity of the chain. That ig; is given by
and the fluid-sliding statéb). Several snapshots are shown taken at
equidistant time step&) dt=2=/v and (b) 6t=20m/v. In each M+2N,
case a particular snapshot is highlighted. The parameter@aFe v :ZWTCK' (10
=0.2 and(b) F=0.3 andN=500, M=25 (i.e., a=#/10), b
=2, andy=0.05. wherec, is the velocity of the kinks and antikinks, ahy, is

500

300 1

¥

100

T
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0.35 pare the FK model with a simpler model, namely, one par-
> 5 ticle in a tilted spatially periodic potential plus additive white
% 0.307 i noise. This model was studied in detail by Risken and Voll-
C 0.254 L mer [5,20]. The single particle and the noise correspond to
3 the center of mass of the FK model and the chaotic motion of
- 0.20 N the internal degrees of freedom, respectively. Of course the
= 554 N noise is neither additive nor white. Its strength depends on
‘a the state. It is obvious that the solid-sliding state and the
_8 0.10 1 - stationary state of the FK model correspond to the running
0 state and the locked state of the simple model in the absence
g 0051 i of noise. We suggest that the fluid-sliding state and the kink-
0.00 dominated state of the FK model also correspond to the run-
23 25 27 29 31 33 35 37 ning and locked states of the simple model, but now with
Mv/\/0 noise. Risken and Vollmer showed that the bistability be-

tween the running state and the locked state disappears even

FIG. 10. The velocity distribution in the kink-dominated regime for infinitesimally weak noise. There is a well-defined tran-
near the transition point. The statistics is obtained from 5000sition point F, which is smeared out for increasing noise
samples. Each sample is the sliding velogityaveraged over 200 strength. Fory<< Jb, itis given by
time units. The velocity of the quiescent phase is givenuly
~0.1457. The numbered vertical lines denote the nunMerof F,=3.3576y\b. (12)
kink-antikink pairs. The parameters are the same as in Fig. 9.
the number of kink-antikink pairs. In the q_uiescent.stgte,}lluz;\slg,egs;:g;ﬁ;?gzé;gﬁls;jggg? that this is indeed
without kink-antikink pairs, the average sliding velocity is
given byvy=2mMcy/N. Thus the ratiacw/(vy/M) directly
gives the total number of kinks and antikink&.e., ll. NONEQUILIBRIUM FREEZING AND MELTING
M+2N,). Figure 10 depicts the distribution of the sliding
velocity shown in Fig. 9. In addition to the large peak at the
quiescent state, one clearly sees small peakiNfer1 and

The aim of this section is to take a closer look at the
hysteresis loop between stationary states and the fluid-sliding
5 state(see Fig. 1 There are two different types of transitions.

' hi her i ltivle of The first is depinning-pinningDP) transition, where the

For a approac Ing zergor any other mteger mu tiple o (chaotically sliding chain turns into a stationary one. It is a
2m) the average sliding velocity of the kink-dominated slid- i,y of nonequilibrium freezing and, as in usual first-order
ing state also approaches zero. It disappea@=e0. Thus  yhaqe transitions, the chain can be “supercooled” below the
t_he system goes fro_m the fluid-sliding state dlrect_l)_/ toa _Stafransition pointFpp. That is, forF slightly below F pp the
tionary state wherk is decreased below the transition point ¢pain does not freeze immediately. It takes a while until a
Frgr. If the value ofb is not too largdi.e., b=0(1)], the  (yiical nucleus has appeared. The second transition is the
stationary state WI|| be the grpund stald®]. The transition is inning-depinning(PD) transition. The transition poirpp
oft_en accqmpanled by transients Wher_e a few I_<|nk-an_t|k|n epends on the stationary state and therefore on the history
pairs survive for_ a Con5|derably long time. But in all simu- ;¢ e system. In an actual experiment where one sweeps
lations these pairs eventually disappeared. , through the hysteresis loop at a finite rate, one will therefore

We found that the transition poiffigcr is nearly indepen- ot ghtain well-defined transitions points, but more or less
dent ofa (as long asa/27 is near an integer valiieTable | proaq distributions. An example of such(aumerical ex-
shows thaF gy increases wittb weaker than linearly. _periment is shown in the inset of Fig(al. It is typical that

_In order to understand the transition between the fluidye gistribution ofFpp is narrower than the distribution of
sliding state and the kink-dominated sliding state we COME_ . For a quasistatic sweep the distribution Bfp be-

. _ . comes sharp, whereas the width of the distributiofrgf is
TABLE I. The transition poinF g« between fluid-sliding states nearly independent on the sweeping rate
and kink-dominated sliding states and the transition p&intbe- From equilibrium thermodynamics it is well known that
tween the running state and the locked state of a single particle ina__,.. .
melting and freezing occur at the same temperature, and the

periodic potential under the influence of weak noise. The paramfransition is of first order. In our case. far from thermal equi-
eters areN=500, M=0, andy=0.05. ' ' 9

librium, the situation is different. In the overdamped limit the

b Frer F, pinning-dep!nn?ng transi.ti-on poirfEpp is identica.l _With. the
depinning-pinning transitiorFpp, but the transition is of

0.25 0.096 0.0840 second ordef21,22. In the underdamped case we have bi-
0.5 0.130 0.1187 stability between sliding states and stationary states, i.e.,
1 0.187 0.1679 For<Fpp.
2 0.276 0.2374 A further characteristic feature of nonequilibrium melting
3 0.362 0.2908 and freezing is the change of the effective temperdisee,
4 0.444 0.3358 e.g., Fig. 1b)]. This is a general property which is also found
5 0.519 0.3754 in similar models with nonzero temperature of the environ-

ment[10,12,13. That is, the fluid-sliding state has an effec-
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FIG. 11. Nucleation of a stationary state in the depinning- FIG. 12. Cumulative density of the duration timgs. Each
pinning transitions. The time step between two snapshotét is curve is obtained from 500 numerical nucleation experiments. The
=4m/v. The snapshot just before nucleation is highlighted. Theparameters ara=167/25, b=2, y=0.05, andF=0.097.
parameters areN=500, M=160, b=2, y=0.05 and F
=0.097. Kadar-Parisi-Zhang equation with negative nonlined2).

It is a nonlinear diffusion equation which models the surface
tive temperature which i;idependenbf the temperature of growth in disordered media. Here the dissipation is strong
the environment as long as the latter is considerably less thaand the randomness of the pinning landscape is important,
the former. The effective temperature is a measure of theontrary to the weakly damped FK model. Nevertheless the
enhanced energy flow due to the excitation of phonons.  pinning-depinning transition is of first order, and the state

which freezes out of the sliding state is a two-domain state,

A. Freezing: Depinning-pinning transition as in the FK modelcompare Fig. 2 of Refl23] with Fig.

o . . . o 17).

We have studied in detail the depinning-pinning transition "o qration of freezindy, is the sum of the nucleation

from a fluid-sliding state to a ;tathnary state.. We have ChOfime ty and the growth timeg. The nucleation time is the
sen a value oa where the fluid-sliding state is completely

. . . . . time that evolves until a critical nucleus appears. A critical
spatlc_)t_emporally ChaOt'C.'.A§ In-an Ord'”aTY f|r§t-order phasenucleus is a nucleus which is large enough to grow into the
transition at thermal equilibrium, the transition is caused by

%uid-sliding state. The nucleation tintg will be a Poisson
nucleation processThat is, a small portion of the chain be- g R 01Ss9

X i . distribution if the probability for the appearance of a critical
comes stationary, and the fronts between this stationar b y bp

Al . Mucleus in a short time step is small, i.e.
nucleus and the sliding chain propagate into the chain. An P B

example of such a nucleation process is shown in Fig. 11. p(ty)=6"te /0, (12)
One sees that states appear behind the fronts which can be
characterized by an average particle distaac@r density It is well known that the average and standard deviations of
1/a) which is roughly constant. Note that the valuesaof a Poisson-distributed value are identical, i{&y)=Aty= 6.
behind both fronts have to be different. This can be underFor systems much larger than the critical nucleus, the prob-
stood by the following argument. In the previous paper weability for nucleation increases linearly with the system size,
saw that because of the conservation of the number of pai-€., 6~ 1/N.
ticles the velocity of a front traveling from one particle tothe  The timetg for a critical nucleus to grow up to the sta-
next is given byc=(v,—v,)/(a,—a;), where the average tionary state does not fluctuate as stronglyt,gsbecause it
particle distance and the average sliding velocity on bothis roughly given by the system size divided by the sum of
sides of the front are given bg,, andvy,, respectively. front velocities. Thugtg)~N.
The chaotic sliding state is characterized &y=27M/N Figure 12 shows that the nucleation process is indeed
andv,>0. For the stationary state,=0 holds. In order to characterized by a Poisson distribution wth-1/N. From
have fronts traveling in opposite directio(eee Fig. 11the fits of the curves shown in Fig. 12, we fouriN=(2.1
average particle distances of the stationary states have to be0.1)x 10°. One can also see a shift of the distribution for
different (one larger thara and one smaller than). We increasing\ to larger values ofy, . This reflects the fact that
found that they are always the nearest integer multiples,of (tg) increases withN.
that is, for 0<a< s they are zero aner. From this consid- For values ofa between 2.45 and 3.0&ndb=2, vy
eration it is clear that after the depinning-pinning transition=0.05, N=500, andF~Fg«) we found that the fluid-
the system cannot be in the ground sfdi@], which is char-  sliding state changes its character. A domain appears where
acterized by a single domain with a uniform Instead, the the particles are stationafyith two particles per potential
chain will be in a stationargwo-domain statavhich is not  well). This domain which is surrounded by spatiotemporal
quite perfect because each domain contains defects at loghaos has a constant size, and travels through the chain with
density. a constant velocity. The transition from this so-calteaffic-

A similar depinning-pinning transition was found in a jam state[10] to a stationary one also occurs via nucleation.
seemingly completely different model, namely, the quenchedhe critical nucleus always seems to appear at the back of
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240 ' ‘ : : : : we find a broad distribution ofpp even for very small
200 sweep rates.
160 4 " IV. SUMMARY AND CONCLUDING REMARKS
o i In this paper we have shown that, in theaklydamped
- and strongly driven FK model, spatiotemporal chaos appears.
80 - L This chaotic state, called tHriid-sliding state has an effec-
tive temperature which reflects the fact that phonons are ex-
404 - cited. This is contrasted by the solid-sliding state, where no
phonons are excitef26]. The excitation of phonons opens
up additional channels of dissipation. Thus friction in the

o T T T T 1 T

1420 1440 1460 1480 N . . S

1340 1360 1380 1400 142 fluid-sliding state is larger than in the solid-sliding state.

X.—q| : -

j The velocity-force characteristic shows a pronounced

le of & microsii h , | transition if the average particle distanaeis near but not
. |=th 13._tAn exahmp € OTE “?'Cfots 'E' Sgap_s otfeegt ;‘2 mtTek:va %figentical to an integer multiple of the period of the external
en time units are shown. The inset shogsor j €[160,233. The 0 yia) 1t is a transition between the kink-dominated slid-

parameters ardl=233, M=89, b=2, y=0.05, andF from ! . - .
ing state and the fluid-sliding state. Below the transition

0.115 54 until 0.115 575, at te of 10 " N . .
untt ataraeo pointF 1, sliding is caused by the propagation af Rinks.

the stationary domain. It reverses the propagation directioAPProaching the transition point from below leads to an in-

of the front. That is, the chaotic state stops traveling into thé:reasing production of kink-antikink pairs. Above the transi-

stationary one. Instead a front propagates into the chaotifion Point all kinks and antikinks disappear, and the chain is

state, leaving behind a stationary state different from the all" the fluid-sliding state with an average sliding velocity

ready existing one. Thus the result is again a stationary twolVhich depends only weakly on the average particle density

domain state where one domain already exists at least pat/e- I the kink-dominated regime the average sliding veloc-
tially before the transition. The nucleation probability is 'Y IS Proportional toeamod 2m. The transition poinf g is

roughly independent of the system sMebecause the nucle- rUghly independent o&. For small values ob it is very
ation site is predetermined. well approximated by the transition point between the run-

ning and locked solution of aN=1 FK model with infini-
tesimally small additive white noisfi.e., Eq. (11)]. This
raises the question of whether the dynamics can be reduced
The transition from a stationary chain to a sliding one isto a center-of-mass motion plus some nontrivialg., col-
the pinning-depinning transition. The transition pofg,  ored, state-dependenioise term.
depends on the stationary state. It corresponds to a saddle- The nonequilibrium freezing.e., the transition from slid-
node bifurcation where the particular stationary state annihiing to stationarity of the fluid-sliding state is a nucleation
lates with an unstable stationary state. In the overdampeprocess. The resulting stationary state has two domains of
limit Fpp is uniquely defined by the saddle-node bifurcationdifferent particle densities.
of the last stable stationary state, which is usually the state The nonequilibrium meltingi.e., the transition from a
which develops adiabatically out of the ground state For stationary state to slidingof such a stationary state corre-
=0. The disappearances of the other stationary states in sponds to a saddle-node bifurcation where the stationary and,
saddle-node bifurcation lead only to more or less local rearef course, the stable state annihilates with its unstable coun-
rangements of the chain. We call such a rearrangement t@rpart. In the case of nonzero environmental temperature the
microslip. A microslip changes the center of mass of thetransition occurs a bit earlier because thermal activation
chain but does not lead to sliding. An example is shown inovercomes the barrier, which decreases to zero at the saddle-
Fig. 13. This behavior and the statistics of microslips havenode bifurcation. Not all saddle-node bifurcations lead to
been studied mainly in models with a random external pomelting. They may lead to a local rearrangement of the par-
tential [24,25. ticle configuration called a microslip. The pinning-depinning
In the underdamped regime the energy gained from a lotransition point depends on the history because each station-
cal rearrangement is not dissipated immediately. This mawry state has another bifurcation point.
lead to an avalanche which turns the whole system into a Our results are qualitatively very similar to the results of
sliding state. Whether a saddle-node bifurcation leads to similar models. Persson studied a two-dimensional Lennard-
microslip or to a transition to sliding depends on the station-Jones liquid on a corrugated potential with square symmetry
ary state and on the damping constgnfor each stationary at a nonzero temperatufd2]. He varied the temperature
state one can presumably find a critical valyewhich dis-  between one-third and one-half of the melting temperature
tinguishes both cases: Fgr>y, we obtain a microslip; oth-  (the thermal energy was roughly one-tenth of the activation
erwise we obtain a transition to sliding. In our simulationsenergy for single particle diffusionHe obtained velocity-
we found only a few(not more than threemicroslips fory  force characteristics and effective temperature plots similar
=0.05 andb=2. The pinning-depinning transition point de- to Fig 1. Because of the relatively high temperature of the
pends strongly on the history of the system, because the aenvironment, he did not find hysteresis between the solid-
tual value ofF pp depends on the stationary state. Sweepingsliding state and the fluid-sliding state. As in the FK model,
several times through the pinning-depinning hysteresis loopghe transition from the fluid-sliding state to a stationary state

B. Melting: Pinning-depinning transition
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is also a nucleation process. Persson found that it occuifer two-dimensional layers. There seems to be no qualitative
when the effective temperature is equal to the melting temédifferences between one and two dimensions. Again
perature at thermal equilibrium. Because the velocity distriwvelocity-force characteristics and effective temperature plots
bution of the fluid-sliding state was Gaussian, he argued thaire similar to our results. They found a hysteresis between
the fluid-sliding state is in a kind of thermal equilibrium. solid sliding and fluid sliding. Its width decreases with the
Therefore it has to freeze below the melting temperature. Buénvironmental temperature and disappears eventiatha
as we have seen in Sec. Il A, Gaussian distributed Ve|0Citie@mperature which is rough|y one-fifth of the activation bar-
do not imply a quasithermal equilibrium. It would be inter- rier for hopping of uncoupled single particles\ear fully
esting to examine whether in Persson’s model the equipartcommensurate particle densities, they found a transitien
tion theorem of the phonon modes is fulfilled or not. This ispgted by F i) Which is similar to the transition from the
clearly a better test on thermal equilibrium. kink-dominated sliding regime to the fluid-sliding regime of
Granato, Baldan, and Ying studied a two-dimensionakhe FK model. Because their chain was shes., N=105)
Frenkel-Kontorova model at nonzero temperatlfe}. The  this transition shows hysteresis for very low temperatures.
external potential is corrugated only in the direction of the|nstead of a fully chaotic fluid-sliding regime they always
applied force. Also, the particles can move only in this di-found two-domain states with alternatively running and
rection. They did simulations at a temperature which corretgcked particlestraffic-jam regime. They also measured the
sponds to one-fourth of the activation energy, and which igransition pointF ,; as function of the damping constant
roughly one-fifth of the melting temperature. They also[18g]. It increases roughly linear with the damping constant
found a behavior as in Fig. 1, again without a hysteresigyt the authors seemed not to be aware that(El).is again

between the SO|id-S|iding state and f|UId-S|IdIng state. The)é remarkably good approximati(ﬂhe', errors are less than
also confirmed the observation of Persson that the transitiongog for F

from sliding to stationarity occurs at the melting temperature.
Braun and co-workers investigated a generalized FK

model that is quite similar to the model studied by Persson
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